Zookeeper(后续简称ZK)是一个分布式的,开放源码的分布式应用程序协调服务,通常以集群模式运转,其协调能力可以理解为是基于观察者设计模式来实现的;ZK服务会使用Znode存储使用者的数据,并将这些数据以树形目录的形式来组织管理,支持使用者以观察者的角色指定自己关注哪些节点\数据的变更,当这些变更发生时,ZK会通知其观察者;为满足本篇目标所需,着重介绍以下几个关键特性:
数据组织:数据节点以树形目录(类似文件系统)组织管理,每一个节点中都会保存数据信息和节点信息。
ZooKeeper's Hierarchical Namespace
集群模式:通常是由3、5个基数实例组成集群,当超过半数服务实例正常工作就能对外提供服务,既能避免单点故障,又尽量高可用,每个服务实例都有一个数据备份,以实现数据全局一致
ZooKeeper Service
顺序更新:更新请求都会转由leader执行,来自同一客户端的更新将按照发送的顺序被写入到ZK,处理写请求创建Znode时,Znode名称后会被分配一个全局唯一的递增编号,可以通过顺序号推断请求的顺序,利用这个特性可以实现高级协调服务
监听机制:给某个节点注册监听器,该节点一旦发生变更(例如更新或者删除),监听者就会收到一个Watch Event,可以感知到节点\数据的变更
临时节点:session链接断开临时节点就没了,不能创建子节点(很关键)
ZK的分布式锁正是基于以上特性来实现的,简单来说是:
临时节点:用于支撑异常情况下的锁自动释放能力
顺序节点:用于支撑公平锁获取锁和排队等待的能力
监听机制:用于支撑抢锁能力
集群模式:用于支撑锁服务的高可用
创建一个永久节点作为锁节点(/lock2)
试图加锁的客户端在指定锁名称节点(/lock2)下,创建临时顺序子节点
获取锁节点(/lock2)下所有子节点
对所获取的子节点按节点自增序号从小到大排序
判断自己是不是第一个子节点,若是,则获取锁
若不是,则监听比该节点小的那个节点的删除事件(这种只监听前一个节点的方式避免了惊群效应)
若是阻塞申请锁,则申请锁的操作可增加阻塞等待
若监听事件生效(说明前节点释放了,可以尝试去获取锁),则回到第3步重新进行判断,直到获取到锁
解锁时,将第一个子节点删除释放
可能读者是单篇阅读,这里引入上一篇《分布式锁上-初探》中的一些内容,一个分布式锁应具备这样一些功能特点:
互斥性:在同一时刻,只有一个客户端能持有锁
安全性:避免死锁,如果某个客户端获得锁之后处理时间超过最大约定时间,或者持锁期间发生了故障导致无法主动释放锁,其持有的锁也能够被其他机制正确释放,并保证后续其它客户端也能加锁,整个处理流程继续正常执行
可用性:也被称作容错性,分布式锁需要有高可用能力,避免单点故障,当提供锁的服务节点故障(宕机)时不影响服务运行,这里有两种模式:一种是分布式锁服务自身具备集群模式,遇到故障能自动切换恢复工作;另一种是客户端向多个独立的锁服务发起请求,当某个锁服务故障时仍然可以从其他锁服务读取到锁信息(Redlock)
可重入性:对同一个锁,加锁和解锁必须是同一个线程,即不能把其他线程程持有的锁给释放了
高效灵活:加锁、解锁的速度要快;支持阻塞和非阻塞;支持公平锁和非公平锁
基于上文的内容,这里简单总结一下ZK的能力矩阵(其它分布式锁的情况会在后续文章中补充):
能力 | ZK | MySql | Redis原生 | Redlock | ETCD |
互斥 | 是 | ||||
安全 | 链接异常,session关闭后锁会自动释放 | ||||
可用性 | 相对还好 | ||||
可重入 | 线程可重入 | ||||
加解锁速度 | 居中 | ||||
阻塞非阻塞 | 都支持 | ||||
公平非公平 | 仅公平锁 |
关于性能不太高的一种说法
因为每次在创建锁和释放锁的过程中,都要动态创建、销毁临时节点来实现锁功能。ZK中创建和删除节点只能通过Leader服务器来执行,然后Leader服务器还需要将数据同步到所有的Follower机器上,这样频繁的网络通信,性能的短板是非常突出的。在高性能,高并发的场景下,不建议使用ZooKeeper的分布式锁。
由于ZooKeeper的高可用特性,在并发量不是太高的场景,也推荐使用ZK的分布式锁。
Zookeeper 客户端框架 Curator 提供的 InterProcessMutex 是分布式锁的一种实现,acquire 方法阻塞|非阻塞获取锁,release 方法释放锁,另外还提供了可撤销、可重入功能。
4.1 接口介绍
复制
// 获取互斥锁 public void acquire() throws Exception;// 在给定的时间内获取互斥锁 public boolean acquire(long time, TimeUnit unit) throws Exception;// 释放锁处理 public void release() throws Exception;// 如果当前线程获取了互斥锁,则返回trueboolean isAcquiredInThisProcess();
1.
2.
3.
4.
5.
6.
7.
8.
4.2 pom依赖
复制
<dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-core</artifactId> <version>2.8.2</version></dependency><dependency> <groupId>org.apache.zookeeper</groupId> <artifactId>zookeeper</artifactId> <version>3.5.7</version></dependency><dependency> <groupId>org.apache.curator</groupId> <artifactId>curator-framework</artifactId> <version>4.3.0</version></dependency><dependency> <groupId>org.apache.curator</groupId> <artifactId>curator-recipes</artifactId> <version>4.3.0</version></dependency><dependency> <groupId>org.apache.curator</groupId> <artifactId>curator-client</artifactId> <version>4.3.0</version></dependency>
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
4.3 示例
复制
package com.atguigu.case3;import org.apache.curator.framework.CuratorFramework;import org.apache.curator.framework.CuratorFrameworkFactory;import org.apache.curator.framework.recipes.locks.InterProcessMutex;import org.apache.curator.retry.ExponentialBackoffRetry;public class CuratorLockTest {public static void main(String[] args) {// 创建分布式锁1 InterProcessMutex lock1 = new InterProcessMutex(getCuratorFramework(), "/locks");// 创建分布式锁2 InterProcessMutex lock2 = new InterProcessMutex(getCuratorFramework(), "/locks");new Thread(new Runnable() {@Override public void run() {try {lock1.acquire();System.out.println("线程1 获取到锁");lock1.acquire();System.out.println("线程1 再次获取到锁");Thread.sleep(5 * 1000);lock1.release();System.out.println("线程1 释放锁");lock1.release();System.out.println("线程1 再次释放锁");} catch (Exception e) {e.printStackTrace();}}}).start();new Thread(new Runnable() {@Override public void run() {try {lock2.acquire();System.out.println("线程2 获取到锁");lock2.acquire();System.out.println("线程2 再次获取到锁");Thread.sleep(5 * 1000);lock2.release();System.out.println("线程2 释放锁");lock2.release();System.out.println("线程2 再次释放锁");} catch (Exception e) {e.printStackTrace();}}}).start();}private static CuratorFramework getCuratorFramework() {ExponentialBackoffRetry policy = new ExponentialBackoffRetry(3000, 3);CuratorFramework client = CuratorFrameworkFactory.builder().connectString("xxx:2181,xxx:2181,xxx:2181").connectionTimeoutMs(2000).sessionTimeoutMs(2000).retryPolicy(policy).build();// 启动客户端 client.start();System.out.println("zookeeper 启动成功");return client;}}
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
通过这个实例对照第2节内容来理解加解锁的流程,以及如何避免惊群效应。
复制
package com.rock.case2;import org.apache.zookeeper.*;import org.apache.zookeeper.data.Stat;import java.io.IOException;import java.util.List;import java.util.concurrent.CountDownLatch;/** * zk 分布式锁 v1版本: * 完成功能 : * 1. 避免了惊群效应 * 缺失功能: * 1. 超时控制 * 2. 读写锁 * 3. 重入控制 */public class DistributedLock {private String connectString;private int sessionTimeout;private ZooKeeper zk;private CountDownLatch connectLatch = new CountDownLatch(1);private CountDownLatch waitLatch = new CountDownLatch(1);private String waitPath;private String currentNode;private String LOCK_ROOT_PATH;private static String NODE_PREFIX = "w";public DistributedLock(String connectString, int sessionTimeout, String lockName){//TODO:数据校验 this.connectString = connectString;this.sessionTimeout = sessionTimeout;this.LOCK_ROOT_PATH = lockName;}public void init() throws IOException, KeeperException, InterruptedException {// 建联 zk = new ZooKeeper(connectString, sessionTimeout, watchedEvent -> {// connectLatch 连接上zk后 释放 if (watchedEvent.getState() == Watcher.Event.KeeperState.SyncConnected) {connectLatch.countDown();}});connectLatch.await();// 等待zk正常连接后// 判断锁名称节点是否存在 Stat stat = zk.exists(LOCK_ROOT_PATH, false);if (stat == null) {// 创建一下锁名称节点 try {zk.create(LOCK_ROOT_PATH, LOCK_ROOT_PATH.getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);} catch (KeeperException e) {//并发创建冲突忽略。 if (!e.code().name().equals("NODEEXISTS")) {throw e;}}}}/** * 待补充功能: * 1. 超时设置 * 2. 读写区分 * 3. 重入控制 */public void zklock() throws KeeperException, InterruptedException {if (!tryLock()) {waitLock();zklock();}}/** * */private void waitLock() throws KeeperException, InterruptedException {try {zk.getData(waitPath, new Watcher() {@Override public void process(WatchedEvent watchedEvent){// waitLatch 需要释放 if (watchedEvent.getType() == Watcher.Event.EventType.NodeDeleted && watchedEvent.getPath().equals(waitPath)) {waitLatch.countDown();}}}, new Stat());// 等待监听 waitLatch.await();} catch (KeeperException.NoNodeException e) {//如果等待的节点已经被清除了,不等了,再尝试去抢锁 return;}}private boolean tryLock() throws KeeperException, InterruptedException {currentNode = zk.create(LOCK_ROOT_PATH + "/" + NODE_PREFIX, null, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);// 判断创建的节点是否是最小的序号节点,如果是获取到锁;如果不是,监听他序号前一个节点 List<String> children = zk.getChildren(LOCK_ROOT_PATH, false);// 如果children 只有一个值,那就直接获取锁; 如果有多个节点,需要判断,谁最小 if (children.size() == 1) {return true;} else {String thisNode = currentNode.substring(LOCK_ROOT_PATH.length() + 1);// 通过w00000000获取该节点在children集合的位置int index = children.indexOf(thisNode);if (index == 0) {//自己就是第一个节点 return true;}// 需要监听 他前一个节点变化 waitPath = LOCK_ROOT_PATH + "/" + children.get(index - 1);}return false;}// 解锁 public void unZkLock(){// 删除节点 try {zk.delete(this.currentNode, -1);} catch (InterruptedException e) {e.printStackTrace();} catch (KeeperException e) {e.printStackTrace();}}}
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
本文转载自微信公众号「架构染色」,可以通过以下二维码关注。转载本文请联系【架构染色】公众号作者。