面试官:说说你对堆的理解?如何实现?应用场景?

堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是Olog(n),插入数据和删除堆顶元素的主要逻辑就是堆化。
首页 新闻资讯 行业资讯 面试官:说说你对堆的理解?如何实现?应用场景?

[[426251]]

本文转载自微信公众号「JS每日一题」,作者灰灰。转载本文请联系JS每日一题公众号。

一、是什么

堆(Heap)是计算机科学中一类特殊的数据结构的统称

堆通常是一个可以被看做一棵完全二叉树的数组对象,如下图:

总是满足下列性质:

  • 堆中某个结点的值总是不大于或不小于其父结点的值

  • 堆总是一棵完全二叉树

堆又可以分成最大堆和最小堆:

  • 最大堆:每个根结点,都有根结点的值大于两个孩子结点的值

  • 最小堆:每个根结点,都有根结点的值小于孩子结点的值

二、操作

堆的元素存储方式,按照完全二叉树的顺序存储方式存储在一个一维数组中,如下图:

用一维数组存储则如下:

复制

[0, 1, 2, 3, 4, 5, 6, 7, 8]
  • 1.

根据完全二叉树的特性,可以得到如下特性:

  • 数组零坐标代码的是堆顶元素

  • 一个节点的父亲节点的坐标等于其坐标除以2整数部分

  • 一个节点的左节点等于其本身节点坐标 * 2 + 1

  • 一个节点的右节点等于其本身节点坐标 * 2 + 2

根据上述堆的特性,下面构建最小堆的构造函数和对应的属性方法:

复制

class MinHeap {   constructor() {     // 存储堆元素     this.heap = []   }   // 获取父元素坐标   getParentIndex(i) {     return (i - 1) >> 1   }      // 获取左节点元素坐标   getLeftIndex(i) {     return i * 2 + 1   }     // 获取右节点元素坐标   getRightIndex(i) {     return i * 2 + 2   }      // 交换元素   swap(i1, i2) {     const temp = this.heap[i1]     this.heap[i1] = this.heap[i2]     this.heap[i2] = temp   }      // 查看堆顶元素   peek() {     return this.heap[0]   }      // 获取堆元素的大小   size() {     return this.heap.length   } }
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

  • 16.

  • 17.

  • 18.

  • 19.

  • 20.

  • 21.

  • 22.

  • 23.

  • 24.

  • 25.

  • 26.

  • 27.

  • 28.

  • 29.

  • 30.

  • 31.

  • 32.

  • 33.

  • 34.

  • 35.

  • 36.

  • 37.

涉及到堆的操作有:

  • 插入

  • 删除

插入

将值插入堆的底部,即数组的尾部,当插入一个新的元素之后,堆的结构就会被破坏,因此需要堆中一个元素做上移操作

将这个值和它父节点进行交换,直到父节点小于等于这个插入的值,大小为k的堆中插入元素的时间复杂度为O(logk)

如下图所示,22节点是新插入的元素,然后进行上移操作:

相关代码如下:

复制

// 插入元素 insert(value) {   this.heap.push(value)   this.shifUp(this.heap.length - 1) }  // 上移操作 shiftUp(index) {   if (index === 0) { return }   const parentIndex = this.getParentIndex(index)   if(this.heap[parentIndex] > this.heap[index]){     this.swap(parentIndex, index)     this.shiftUp(parentIndex)   } }
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

删除

常见操作是用数组尾部元素替换堆顶,这里不直接删除堆顶,因为所有的元素会向前移动一位,会破坏了堆的结构

然后进行下移操作,将新的堆顶和它的子节点进行交换,直到子节点大于等于这个新的堆顶,删除堆顶的时间复杂度为O(logk)

整体如下图操作:

相关代码如下:

复制

// 删除元素 pop() {   this.heap[0] = this.heap.pop()   this.shiftDown(0) }  // 下移操作 shiftDown(index) {   const leftIndex = this.getLeftIndex(index)   const rightIndex = this.getRightIndex(index)   if (this.heap[leftIndex] < this.heap[index]){     this.swap(leftIndex, index)     this.shiftDown(leftIndex)   }   if (this.heap[rightIndex] < this.heap[index]){     this.swap(rightIndex, index)     this.shiftDown(rightIndex)   } }
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

  • 16.

  • 17.

  • 18.

  • 19.

时间复杂度

关于堆的插入和删除时间复杂度都是Olog(n),原因在于包含n个节点的完全二叉树,树的高度不会超过log2n

堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是Olog(n),插入数据和删除堆顶元素的主要逻辑就是堆化

三、总结

堆是一个完全二叉树

堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值

对于每个节点的值都大于等于子树中每个节点值的堆,叫作“大顶堆”

对于每个节点的值都小于等于子树中每个节点值的堆,叫作“小顶堆”

根据堆的特性,我们可以使用堆来进行排序操作,也可以使用其来求第几大或者第几小的值

参考文献

https://baike.baidu.com/item/%E5%A0%86/20606834

 

https://xlbpowder.cn/2021/02/26/%E5%A0%86%E5%92%8C%E5%A0%86%E6%8E%92%E5%BA%8F/

 

16    2021-09-28 07:12:09    测试 路径